Title of article :
Permutation Trees and Variation Statistics
Author/Authors :
Hetyei، نويسنده , , Gلbor and Reiner، نويسنده , , Ethan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
In this paper we exploit binary tree representations of permutations to give a combinatorial proof of Purtillʹs result [8] that
nvcd(δ)‖c = a + bd = ab + ba = ∑σ ∈ Snvab(σ),
Anis the set of André permutations,vcd(σ) is thecd-statistic of an André permutation andvab(σ) is theab-statistic of a permutation. Using Purtillʹs proof as a motivation we introduce a new ‘Foata–Strehl-like’ action on permutations. This Z2n − 1-action allows us to give an elementary proof of Purtillʹs theorem, and a bijection between André permutations of the first kind and alternating permutations starting with a descent. A modified version of our group action leads to a new class of André-like permutations with structure similar to that of simsun permutations.
Journal title :
European Journal of Combinatorics
Journal title :
European Journal of Combinatorics