Title of article :
A density problem for orthogonal rational functions
Author/Authors :
Bultheel، نويسنده , , A and Gonzلlez-Vera، نويسنده , , P and Hendriksen، نويسنده , , E and Njهstad، نويسنده , , O، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
14
From page :
199
To page :
212
Abstract :
Let {αn}n=1∞ be a sequence of points in the open unit disk in the complex plane and letB0=1 and Bn(z)=∏k=0nαk|αk|αk−z1−αkz, n=1,2,…,(αk/|αk|=−1 when αk=0). We putL=span{Bn: n=0,1,2,…}and we consider the following ‘moment’ problem: a positive-definite Hermitian inner product 〈·,·〉 on L×L, find a nondecreasing function μ on [−π,π] (or a positive Borel measure μ on [−π,π)) such that〈f,g〉=∫−ππf(eiθ)g(eiθ) dμ(θ) for f, g∈L.We give a necessary and sufficient condition (called ‘N-extremality’) on a solution μ of the moment problem in order that L is dense in L2μ.
Keywords :
Orthogonal rational function , Nested disk , N-extremal , Moment problem
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1999
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1549888
Link To Document :
بازگشت