Title of article :
On a Schoenberg-type conjecture
Author/Authors :
de Bruin، نويسنده , , M.G. and Sharma، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
For an arbitrary polynomial Pn(z)=zn−a1zn−1+a2zn−2+⋯+(−1)nan=∏1n(z−zj) with the sum of all zeros equal to zero, a1=∑1nzj=0, the quadratic mean radius is defined byR(Pn)≔1n∑1n|zj|21/2,and the quartic mean radius byS(Pn)≔1n∑1n|zj|41/4.This paper studies a Schoenberg-type conjecture using the quartic mean radius in the following form:n−4n−1S(Pn)4+2n−1R(Pn)4⩾S(Pn′)4,with equality if and only if the zeros all lie on a straight line through the origin in the complex plane.
Keywords :
Geometry of zeros , Weighted sums , inequalities
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics