Title of article :
On the Eigenvalues of Operators with Gaps. Application to Dirac Operators
Author/Authors :
Dolbeault، نويسنده , , Jean and Esteban، نويسنده , , Maria J. and Séré، نويسنده , , Eric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
19
From page :
208
To page :
226
Abstract :
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.
Keywords :
Self-adjoint operators , Quadratic forms , eigenvalues , min-max , Rayleigh–Ritz quotients , Dirac operators , Hardyיs inequality , variational methods , spectral gaps
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1549907
Link To Document :
بازگشت