Title of article :
Hamilton-connectivity of 3-Domination Critical Graphs with α = δ  +  2
Author/Authors :
Chen، نويسنده , , Yaojun and Tian، نويسنده , , Feng and Zhang، نويسنده , , Yunqing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
8
From page :
777
To page :
784
Abstract :
A graph G is 3-domination critical if its domination number \gamma is 3 and the addition of any edge decreases \gamma by 1. It was proved by Favaron et al. that α ≤ δ + 2 for any connected 3-domination critical graph. Denote byτ (G) the toughness of a graph G. Recently Chen et al. conjectured that a connected 3-domination critical graph G is Hamilton-connected if and only if τ(G) > 1 and showed the conjecture is true when α ≤ δ. In this paper, by using a closure operation defined by Bondy and Chvátal, we show the conjecture is true whenα = δ + 2.
Journal title :
European Journal of Combinatorics
Serial Year :
2002
Journal title :
European Journal of Combinatorics
Record number :
1549965
Link To Document :
بازگشت