Title of article
Intersecting families of permutations
Author/Authors
Cameron، نويسنده , , Peter J. and Ku، نويسنده , , C.Y.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
10
From page
881
To page
890
Abstract
Let Sn be the symmetric group on the set X={1,2,…,n}. A subset S of Sn is intersecting if for any two permutations g and h in S, g(x)=h(x) for some x∈X (that is g and h agree on x). Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved that if S⊆Sn is intersecting then |S|≤(n−1)!. This bound is met by taking S to be a coset of a stabiliser of a point. We show that these are the only largest intersecting sets of permutations.
Journal title
European Journal of Combinatorics
Serial Year
2003
Journal title
European Journal of Combinatorics
Record number
1550011
Link To Document