• Title of article

    Intersecting families of permutations

  • Author/Authors

    Cameron، نويسنده , , Peter J. and Ku، نويسنده , , C.Y.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    10
  • From page
    881
  • To page
    890
  • Abstract
    Let Sn be the symmetric group on the set X={1,2,…,n}. A subset S of Sn is intersecting if for any two permutations g and h in S, g(x)=h(x) for some x∈X (that is g and h agree on x). Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved that if S⊆Sn is intersecting then |S|≤(n−1)!. This bound is met by taking S to be a coset of a stabiliser of a point. We show that these are the only largest intersecting sets of permutations.
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    2003
  • Journal title
    European Journal of Combinatorics
  • Record number

    1550011