Title of article :
Minimal-Volume Shadows of Cubes
Author/Authors :
Ostrovskii، نويسنده , , M.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
14
From page :
317
To page :
330
Abstract :
We study the shape of minimal-volume shadows of a cube in a given subspace. First we prove an essentially known result that for every subspace L the set of minimal-volume shadows in L contains a parallelepiped. Our main result is that for some subspaces there exist minimal-volume shadows that are far from parallelepipeds with respect to the Banach–Mazur distance.
Keywords :
minimal volume , the Banach–Mazur distance , compound matrix , totally unimodular matrix , Grothendieck theorem , Absolutely summing operator , cube , projection , directed graph , Sobolev inequality
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1550048
Link To Document :
بازگشت