Title of article :
A combinatorial interpretation of the connection constants for persistent sequences of polynomials
Author/Authors :
D’Antona، نويسنده , , Ottavio M. and Munarini، نويسنده , , Emanuele، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
14
From page :
1105
To page :
1118
Abstract :
We give a combinatorial interpretation of the connection constants for persistent sequences of polynomials in terms of weighted binary paths. In this way we give bijective proofs for many formulas which generalize several classical identities and recurrences, such as the upper index sum, the Lagrange and the Vandermonde sum and Euler’s theorem on the coefficients of Gaussian coefficients.
Keywords :
Lagrange sum , Vandermonde sum , Connection constants , Persistent sequences of polynomials , Binary paths , stirling numbers , Lah numbers , De Morgan numbers , Binomial coefficients , Preferential arrangement numbers , Gaussian coefficients , Generalized De Morgan numbers
Journal title :
European Journal of Combinatorics
Serial Year :
2005
Journal title :
European Journal of Combinatorics
Record number :
1550083
Link To Document :
بازگشت