Title of article :
On the double points of a Mathieu equation
Author/Authors :
Shivakumar، نويسنده , , P.N. and Xue، نويسنده , , Jungong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
15
From page :
111
To page :
125
Abstract :
For a Mathieu equation with parameter q, the eigenvalues can be regarded as functions of the variable q. Our aim is to find q when adjacent eigenvalues of the same type become equal yielding double points of the given Mathieu equation. The problem reduces to an equivalent eigenvalue problem of the form BX=λX, where B is an infinite tridiagonal matrix. A method is developed to locate the first double eigenvalue to any required degree of accuracy when q is an imaginary number. Computational results are given to illustrate the theory for the first double eigenvalue. Numerical results are given for some subsequent double points.
Keywords :
Diagonally dominant matrix , Mathieu equation , Double point , Infinite tridiagonal matrix
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
1999
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1550096
Link To Document :
بازگشت