Title of article :
A Forelli–Rudin Construction and Asymptotics of Weighted Bergman Kernels
Author/Authors :
Engli?، نويسنده , , Miroslav، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
25
From page :
257
To page :
281
Abstract :
Let Ω be a pseudoconvex domain in CN with smooth boundary, −φ, −ψ two smooth defining functions for Ω={φ>0} such that −log ψ, −log φ are plurisubharmonic, z∈Ω a point at which −log φ is strictly plurisubharmonic, and M⩾0 an integer. We show that as k→∞, the Bergman kernels with respect to the weights φkψM have the asymptotic expansionKφkψM(z, z)=kNπNφ(z)k ψ(z)M ∑j=0∞ bj(z) k−j, b0=det −∂2 log φ∂zj ∂zk.For Ω strongly pseudoconvex with real-analytic boundary, φ, ψ real analytic and −log φ, −log ψ strictly plurisubharmonic on Ω, we obtain also the analogous result for KφkψM(x, y) for (x, y) near the diagonal and discuss consequences for the asymptotics of the Berezin transform and for the Berezin quantization. The proofs rely on Feffermanʹs expansion for the Bergman kernel in a certain Forelli–Rudin type domain over Ω; as another application, they also yield a generalization of the cited Feffermanʹs expansion to a class of weighted Bergman kernels.
Keywords :
Feffermanיs asymptotic expansion , Berezin quantization , weighted Bergman kernels , asymptotic behavior , Forelli–Rudin construction , plurisubharmonic functions , Berezin transform
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1550099
Link To Document :
بازگشت