• Title of article

    Combinatorial proofs of inverse relations and log-concavity for Bessel numbers

  • Author/Authors

    Han، نويسنده , , Hyuk and Seo، نويسنده , , Seunghyun، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    11
  • From page
    1544
  • To page
    1554
  • Abstract
    Let the Bessel number of the second kind B ( n , k ) be the number of set partitions of [ n ] into k blocks of size one or two, and let the Bessel number of the first kind b ( n , k ) be the coefficient of x n − k in  − y n − 1 ( − x ) , where y n ( x ) is the n th Bessel polynomial. In this paper, we show that Bessel numbers satisfy two properties of Stirling numbers: The two kinds of Bessel numbers are related by inverse formulas, and both Bessel numbers of the first kind and those of the second kind form log-concave sequences. By constructing sign-reversing involutions, we prove the inverse formulas. We review Krattenthaler’s injection for the log-concavity of Bessel numbers of the second kind, and give a new explicit injection for the log-concavity of signless Bessel numbers of the first kind.
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    2008
  • Journal title
    European Journal of Combinatorics
  • Record number

    1550172