• Title of article

    The graphicahedron

  • Author/Authors

    Araujo-Pardo، نويسنده , , Gabriela and Del Rيo-Francos، نويسنده , , Maria and Lَpez-Dudet، نويسنده , , Mariana and Oliveros، نويسنده , , Deborah and Schulte، نويسنده , , Egon، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    12
  • From page
    1868
  • To page
    1879
  • Abstract
    The paper describes a construction of abstract polytopes from Cayley graphs of symmetric groups. Given any connected graph G with p vertices and q edges, we associate with G a Cayley graph G ( G ) of the symmetric group S p and then construct a vertex-transitive simple polytope of rank q , the graphicahedron, whose 1-skeleton (edge graph) is G ( G ) . The graphicahedron of a graph G is a generalization of the well-known permutahedron; the latter is obtained when the graph is a path. We also discuss symmetry properties of the graphicahedron and determine its structure when G is small.
  • Journal title
    European Journal of Combinatorics
  • Serial Year
    2010
  • Journal title
    European Journal of Combinatorics
  • Record number

    1550313