• Title of article

    Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms

  • Author/Authors

    Chojnowska-Michalik، نويسنده , , Anna and Goldys، نويسنده , , Beniamin، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    37
  • From page
    243
  • To page
    279
  • Abstract
    Let μ be a nondegenerate Gaussian measure on a Hilbert space H. For an arbitrary selfadjoint nonnegative operator A we consider the semigroup etL=Γ(e−tA) on Lp(μ), where Γ stands for the second quantization operator. We provide an explicit characterization of the domains of (I−L)m/2 in Lp(μ) in terms of Gaussian Sobolev spaces thus extending the P. A. Meyer result on equivalence of norms. The main tools are the Littlewood–Paley–Stein inequalities which are proved under minimal assumptions by a purely analytic method following E. Stein (1970, “Topics in Harmonic Analysis,” Princeton Univ. Press, Princeton, NJ).
  • Keywords
    Second quantization , Mehler formula , commutation relation , Littlewoord–Paley–Stein inequalities , bounded imaginary powers , Gaussian Sobolev spaces
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2001
  • Journal title
    Journal of Functional Analysis
  • Record number

    1550355