Title of article
Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms
Author/Authors
Chojnowska-Michalik، نويسنده , , Anna and Goldys، نويسنده , , Beniamin، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
37
From page
243
To page
279
Abstract
Let μ be a nondegenerate Gaussian measure on a Hilbert space H. For an arbitrary selfadjoint nonnegative operator A we consider the semigroup etL=Γ(e−tA) on Lp(μ), where Γ stands for the second quantization operator. We provide an explicit characterization of the domains of (I−L)m/2 in Lp(μ) in terms of Gaussian Sobolev spaces thus extending the P. A. Meyer result on equivalence of norms. The main tools are the Littlewood–Paley–Stein inequalities which are proved under minimal assumptions by a purely analytic method following E. Stein (1970, “Topics in Harmonic Analysis,” Princeton Univ. Press, Princeton, NJ).
Keywords
Second quantization , Mehler formula , commutation relation , Littlewoord–Paley–Stein inequalities , bounded imaginary powers , Gaussian Sobolev spaces
Journal title
Journal of Functional Analysis
Serial Year
2001
Journal title
Journal of Functional Analysis
Record number
1550355
Link To Document