Title of article :
Heat Equation Derivative Formulas for Vector Bundles
Author/Authors :
Driver، نويسنده , , Bruce K. and Thalmaier، نويسنده , , Anton، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We use martingale methods to give Bismut type derivative formulas for differentials and co-differentials of heat semigroups on forms, and more generally for sections of vector bundles. The formulas are mainly in terms of Weitzenböck curvature terms; in most cases derivatives of the curvature are not involved. In particular, our results improve B. K. Driverʹs formula in (1997, J. Math. Pures Appl. (9)76, 703–737) for logarithmic derivatives of the heat kernel measure on a Riemannian manifold. Our formulas also include the formulas of K. D. Elworthy and X.-M. Li (1998, C. R. Acad. Sci. Paris Sér. I Math.327, 87–92).
Keywords :
Heat kernel measure , Malliavin Calculus , de Rham–Hodge Laplacian , Weitzenb?ck decomposition , Bismut formula , Integration by parts , Dirac operator
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis