Title of article :
Functional Calculus for the Ornstein–Uhlenbeck Operator
Author/Authors :
Jose Garcia-Cuerva، نويسنده , , José and Mauceri، نويسنده , , Giancarlo and Meda، نويسنده , , Stefano and Sj?gren، نويسنده , , Peter and Torrea، نويسنده , , José Luis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
38
From page :
413
To page :
450
Abstract :
Let γ be the Gauss measure on Rd and L the Ornstein–Uhlenbeck operator, which is self adjoint in L2(γ). For every p in (1, ∞), p≠2, set φ*p=arc sin |2/p−1| and consider the sector Sφ*p={z∈C : |arg z|<φ*p}. The main result of this paper is that if M is a bounded holomorphic function on Sφ*p whose boundary values on ∂Sφ*p satisfy suitable Hörmander type conditions, then the spectral operator M(L) extends to a bounded operator on Lp(γ) and hence on Lq(γ) for all q such that |1/q−1/2|⩽|1/p−1/2|. The result is sharp, in the sense that L does not admit a bounded holomorphic functional calculus in a sector smaller than Sφ*p.
Keywords :
Ornstein–Uhlenbeck operator , Functional calculus , spectral multiplier , H?rmander–Mihlin condition
Journal title :
Journal of Functional Analysis
Serial Year :
2001
Journal title :
Journal of Functional Analysis
Record number :
1550411
Link To Document :
بازگشت