Title of article :
Connections and Curvature in the Riemannian Geometry of Configuration Spaces
Author/Authors :
Privault، نويسنده , , Nicolas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
37
From page :
367
To page :
403
Abstract :
Torsion free connections and a notion of curvature are introduced on the infinite dimensional nonlinear configuration space Γ of a Riemannian manifold M under a Poisson measure. This allows us to state identities of Weitzenböck type and energy identities for anticipating stochastic integral operators. The one-dimensional Poisson case itself gives rise to a non-trivial geometry, a de Rham–Hodge–Kodaira operator, and a notion of Ricci tensor under the Poisson measure. The methods used in this paper have been thus far applied to d-dimensional Brownian path groups and rely on the introduction of a particular tangent bundle and associated damped gradient.
Keywords :
Configuration spaces , Poisson spaces , covariant derivatives , curvature , Connections
Journal title :
Journal of Functional Analysis
Serial Year :
2001
Journal title :
Journal of Functional Analysis
Record number :
1550508
Link To Document :
بازگشت