Title of article :
A Theorem of Brown–Halmos Type for Bergman Space Toeplitz Operators
Author/Authors :
Ahern، نويسنده , , Patrick and ?u?kovi?، نويسنده , , ?eljko، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
11
From page :
200
To page :
210
Abstract :
We study the analogues of the Brown–Halmos theorem for Toeplitz operators on the Bergman space. We show that for f and g harmonic, TfTg=Th only in the trivial case, provided that h is of class C2 with the invariant laplacian bounded. Here the trivial cases are f or g holomorphic. From this we conclude that the zero-product problem for harmonic symbols has only the trivial solution. Finally, we provide examples that show that the Brown–Halmos theorem fails for general symbols, even for symbols continuous up to the boundary.
Keywords :
Bergman Space , Toeplitz operator , Berezin transform , invariant laplacian
Journal title :
Journal of Functional Analysis
Serial Year :
2001
Journal title :
Journal of Functional Analysis
Record number :
1550647
Link To Document :
بازگشت