Title of article :
Affine Hecke algebras and the Schubert calculus
Author/Authors :
Griffeth، نويسنده , , Stephen and Ram، نويسنده , , Arun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
21
From page :
1263
To page :
1283
Abstract :
Using a combinatorial approach that avoids geometry, this paper studies the structure of KT(G/B), the T-equivariant K-theory of the generalized flag variety G/B. This ring has a natural basis {[OXw]∣w∈W} (the double Grothendieck polynomials), where OXw is the structure sheaf of the Schubert variety Xw. For rank two cases we compute the corresponding structure constants of the ring KT(G/B) and, based on this data, make a positivity conjecture for general G which generalizes the theorems of M. Brion (for K(G/B)) and W. Graham (for HT∗(G/B)). Let [Xλ]∈KT(G/B) be the class of the homogeneous line bundle on G/B corresponding to the character of T indexed by λ. For general G we prove “Pieri–Chevalley formulas” for the products [Xλ][OXw], [X−λ][OXw], [Xw0λ][OXw], and [OXw0si][OXw], where λ is dominant. By using the Chern character and comparing lowest degree terms the products which are computed in this paper also give results for the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in, respectively K(G/B), HT∗(G/B) and H∗(G/B).
Keywords :
Schubert varieties , Flag variety , K-theory , Affine Hecke algebras
Journal title :
European Journal of Combinatorics
Serial Year :
2004
Journal title :
European Journal of Combinatorics
Record number :
1550694
Link To Document :
بازگشت