Title of article :
Hereditary properties of partitions, ordered graphs and ordered hypergraphs
Author/Authors :
Balogh، نويسنده , , Jَzsef and Bollobلs، نويسنده , , Béla and Morris، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
19
From page :
1263
To page :
1281
Abstract :
In this paper we use the Klazar–Marcus–Tardos method (see [A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107 (2004) 153–160]) to prove that, if a hereditary property of partitions P has super-exponential speed, then, for every k -permutation π , P contains the partition of [ 2 k ] with parts { { i , π ( i ) + k } : i ∈ [ k ] } . We also prove a similar jump, from exponential to factorial, in the possible speeds of monotone properties of ordered graphs, and of hereditary properties of ordered graphs not containing large complete, or complete bipartite ordered graphs. sults generalize the Stanley–Wilf conjecture on the number of n -permutations avoiding a fixed permutation, which was recently proved by the combined results of Klazar [M. Klazar, The Füredi–Hajnal conjecture implies the Stanley–Wilf conjecture, in: D. Krob, A.A. Mikhalev, A.V. Mikhalev (Eds.), Formal Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, pp. 250–255] and Marcus and Tardos [A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley–Wilf conjecture, J. Combin. Theory Ser. A 107 (2004) 153–160]. Our main results follow from a generalization to ordered hypergraphs of the theorem of Marcus and Tardos.
Journal title :
European Journal of Combinatorics
Serial Year :
2006
Journal title :
European Journal of Combinatorics
Record number :
1550727
Link To Document :
بازگشت