Title of article :
Continuity of approximation by least-squares multivariate Padé approximants
Author/Authors :
Huard، نويسنده , , Alain and Robin، نويسنده , , Vincent، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
We prove that if (uh(z))h>0 is a family of meromorphic functions which converges to a meromorphic function u(z), then [M,N]uh→u when (h,M)→(0,+∞), where [M,N]uh denotes the least-squares multivariate Padé approximants (LSPA) of uh. This property is fundamental when using the LSPA to approximate the solution of a partial differential equations problem depending on some parameters. We illustrate it on a structural mechanics eigenproblem with variable damping coefficient.
Keywords :
Padé approximant , Multivariate Padé approximant , Partial differential equations problems depending on some parameters , Convergence of multivariate Padé approximant
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics