Title of article :
From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix
Author/Authors :
Egge، نويسنده , , Eric and Loehr، نويسنده , , Nicholas A. and Warrington، نويسنده , , Gregory S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
2014
To page :
2027
Abstract :
Every symmetric function f can be written uniquely as a linear combination of Schur functions, say f = ∑ λ x λ s λ , and also as a linear combination of fundamental quasisymmetric functions, say f = ∑ α y α Q α . For many choices of f arising in the theory of Macdonald polynomials and related areas, one knows the quasisymmetric coefficients y α and wishes to compute the Schur coefficients x λ . This paper gives a general combinatorial formula expressing each x λ as a linear combination of the y α ’s, where each coefficient in this linear combination is + 1 , − 1 , or 0. This formula arises by suitably modifying Eğecioğlu and Remmel’s combinatorial interpretation of the inverse Kostka matrix involving special rim-hook tableaux.
Journal title :
European Journal of Combinatorics
Serial Year :
2010
Journal title :
European Journal of Combinatorics
Record number :
1550873
Link To Document :
بازگشت