Title of article :
Indexes of long zero-sum sequences over cyclic groups
Author/Authors :
Zeng، نويسنده , , Xiangneng and Yuan، نويسنده , , Pingzhi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
1213
To page :
1221
Abstract :
Let G be a cyclic group of order n , and let S ∈ F ( G ) be a zero-sum sequence of length | S | ≥ 2 ⌊ n / 2 ⌋ + 2 . Suppose that S can be decomposed into a product of at most two minimal zero-sum sequences. Then there exists some g ∈ G such that S = ( n 1 g ) ⋅ ( n 2 g ) ⋅ ⋯ ⋅ ( n | S | g ) , where n i ∈ [ 1 , n ] for all i ∈ [ 1 , | S | ] and n 1 + n 2 + ⋯ + n | S | = 2 n . And we also generalize the above result to long zero-sum sequences which can be decomposed into at most k ≥ 3 minimal zero-sum sequences.
Journal title :
European Journal of Combinatorics
Serial Year :
2011
Journal title :
European Journal of Combinatorics
Record number :
1550907
Link To Document :
بازگشت