Title of article :
Ratio and Plancherel–Rotach asymptotics for Meixner–Sobolev orthogonal polynomials
Author/Authors :
Area، نويسنده , , I. and Godoy، نويسنده , , E. and Marcellلn، نويسنده , , F. and Moreno-Balcلzar، نويسنده , , J.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
13
From page :
63
To page :
75
Abstract :
We study the analytic properties of the monic Meixner–Sobolev polynomials {Qn} orthogonal with respect to the inner product involving differences(p,q)S=∑i=0∞[p(i)q(i)+λΔp(i)Δq(i)]μi(γ)ii!, γ>0, 0<μ<1,where λ⩾0, Δ is the forward difference operator (Δf(x)=f(x+1)−f(x)) and (γ)n denotes the Pochhammer symbol. Relative asymptotics for Meixner–Sobolev polynomials with respect to Meixner polynomials is obtained. This relative asymptotics is also given for the scaled polynomials. Moreover, a zero distribution for the scaled Meixner–Sobolev polynomials and Plancherel–Rotach asymptotics for {Qn} are deduced.
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2000
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1550929
Link To Document :
بازگشت