Title of article :
Counting spectral radii of matrices with positive entries
Author/Authors :
Dias da Silva، نويسنده , , S. Peirani and J.A. de Freitas Pacheco، نويسنده , , Pedro J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
1316
To page :
1325
Abstract :
The sum–product conjecture of Erdős and Szemerédi states that, given a finite set A of positive numbers, one can find asymptotic lower bounds for max { | A + A | , | A ⋅ A | } of the order of | A | 1 + δ for every δ < 1 . In this paper we consider the set of all spectral radii of n × n matrices with entries in A , and find lower bounds for the cardinality of this set. In the case n = 2 , this cardinality is necessarily larger than max { | A + A | , | A ⋅ A | } .
Journal title :
European Journal of Combinatorics
Serial Year :
2013
Journal title :
European Journal of Combinatorics
Record number :
1551028
Link To Document :
بازگشت