Title of article :
Wright functions as scale-invariant solutions of the diffusion-wave equation
Author/Authors :
Gorenflo، نويسنده , , Rudolf and Luchko، نويسنده , , Yuri and Mainardi، نويسنده , , Francesco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
175
To page :
191
Abstract :
The time-fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order α (0<α⩽2). Using the similarity method and the method of the Laplace transform, it is shown that the scale-invariant solutions of the mixed problem of signalling type for the time-fractional diffusion-wave equation are given in terms of the Wright function in the case 0<α<1 and in terms of the generalized Wright function in the case 1<α<2. The reduced equation for the scale-invariant solutions is given in terms of the Caputo-type modification of the Erdélyi–Kober fractional differential operator.
Keywords :
Scale-invariant solutions , Erdélyi–Kober operators , Diffusion-Wave equation , Wright functions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2000
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551057
Link To Document :
بازگشت