Title of article :
Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups
Author/Authors :
Glِckner، نويسنده , , Helge، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
63
From page :
347
To page :
409
Abstract :
We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker–Campbell–Hausdorff (BCH–) Lie groups, which subsumes all Banach–Lie groups and “linear” direct limit Lie groups, as well as the mapping groups CKr(M,G)≔{γ∈Cr(M,G) : γ∣M\K=1}, for every BCH–Lie group G, second countable finite-dimensional smooth manifold M, compact subset K of M, and 0⩽r⩽∞. Also the corresponding test function groups Dr(M,G)=⋃KCKr(M,G) are BCH–Lie groups.
Journal title :
Journal of Functional Analysis
Serial Year :
2002
Journal title :
Journal of Functional Analysis
Record number :
1551094
Link To Document :
بازگشت