Title of article :
Interpolation and approximation from convex sets. II. Infinite-dimensional interpolation
Author/Authors :
Mulansky، نويسنده , , Bernd and Neamtu، نويسنده , , Marian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Let X and Y be topological vector spaces, A be a continuous linear map from X to Y, C⊂X, B be a convex set dense in C, and d∈Y be a data point. Conditions are derived guaranteeing the set B∩A−1(d) to be nonempty and dense in C∩A−1(d). The paper generalizes earlier results by the authors to the case where Y is infinite dimensional. The theory is illustrated with two examples concerning the existence of smooth monotone extensions of functions defined on a domain of the Euclidean space to a larger domain.
Keywords :
M-open map , Constrained interpolation and approximation , open map , Topological vector space , Convex Set , Monotone extension
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics