Title of article :
Fonctions D(G/H)-Finies sur un Espace Symétrique Réductif
Author/Authors :
S. Souaifi، نويسنده , , Sofiane، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
It is well known that, on Rn, every smooth function annihilated by a finite codimensional ideal in the algebra of constant coefficient differential operators, is a linear combination of polynomial exponential functions, P(x)eλ(x), λ ∈ Hom(Rn,C). Furthermore, the polynomial functions are obtained by applying to the exponential functions eλ(x) some constant coefficient differential operator in the parameter λ. We generalize this fact to the reductive symmetric spacesʹ case, the role of the exponential functions being taken by the Eisenstein integrals.
Keywords :
Invariant differential operators , Reductive symmetric spaces , Eisenstein integrals , Asymptotic expansions , Plancherel formula.
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis