Title of article
Classical orthogonal polynomials: dependence of parameters
Author/Authors
Ronveaux، نويسنده , , A. and Zarzo، نويسنده , , A. and Area، نويسنده , , I. and Godoy، نويسنده , , E.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
18
From page
95
To page
112
Abstract
Most of the classical orthogonal polynomials (continuous, discrete and their q-analogues) can be considered as functions of several parameters ci. A systematic study of the variation, infinitesimal and finite, of these polynomials Pn(x,ci) with respect to the parameters ci is proposed. A method to get recurrence relations for connection coefficients linking (∂r/∂cir)Pn(x,ci) to Pn(x,ci) is given and, in some situations, explicit expressions are obtained. This allows us to compute new integrals or sums of classical orthogonal polynomials using the digamma function. A basic theorem on the zeros of (∂/∂ci)Pn(x,ci) is also proved.
Keywords
Difference and q-derivative operators , Classical orthogonal polynomials , Digamma function
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2000
Journal title
Journal of Computational and Applied Mathematics
Record number
1551160
Link To Document