• Title of article

    Classical orthogonal polynomials: dependence of parameters

  • Author/Authors

    Ronveaux، نويسنده , , A. and Zarzo، نويسنده , , A. and Area، نويسنده , , I. and Godoy، نويسنده , , E.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    18
  • From page
    95
  • To page
    112
  • Abstract
    Most of the classical orthogonal polynomials (continuous, discrete and their q-analogues) can be considered as functions of several parameters ci. A systematic study of the variation, infinitesimal and finite, of these polynomials Pn(x,ci) with respect to the parameters ci is proposed. A method to get recurrence relations for connection coefficients linking (∂r/∂cir)Pn(x,ci) to Pn(x,ci) is given and, in some situations, explicit expressions are obtained. This allows us to compute new integrals or sums of classical orthogonal polynomials using the digamma function. A basic theorem on the zeros of (∂/∂ci)Pn(x,ci) is also proved.
  • Keywords
    Difference and q-derivative operators , Classical orthogonal polynomials , Digamma function
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2000
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1551160