Title of article
Interpolation by C1 splines of degree q⩾4 on triangulations
Author/Authors
Davydov، نويسنده , , Oleg and Nürnberger، نويسنده , , Günther، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
25
From page
159
To page
183
Abstract
Let Δ be an arbitrary regular triangulation of a simply connected compact polygonal domain Ω⊂R2 and let Sq1(Δ) denote the space of bivariate polynomial splines of degree q and smoothness 1 with respect to Δ. We develop an algorithm for constructing point sets admissible for Lagrange interpolation by Sq1(Δ) if q⩾4. In the case q=4 it may be necessary to slightly modify Δ, but only if exceptional constellations of triangles occur. Hermite interpolation schemes are obtained as limits of the Lagrange interpolation sets.
Keywords
Bivariate splines , Interpolation
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2000
Journal title
Journal of Computational and Applied Mathematics
Record number
1551284
Link To Document