Title of article :
Lagrange and average interpolation over 3D anisotropic elements
Author/Authors :
Acosta، نويسنده , , Gabriel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
19
From page :
91
To page :
109
Abstract :
An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends “weakly” (improving the results given in Durán (Math. Comp. 68 (1999) 187–199) on the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of the element. On the other hand, merging several known results (Acosta and Durán, SIAM J. Numer. Anal. 37 (1999) 18–36; Durán, Math. Comp. 68 (1999) 187–199; Krı́zek, SIAM J. Numer. Anal. 29 (1992) 513–520; Al Shenk, Math. Comp. 63 (1994) 105–119), we prove optimal order error for the P1-Lagrange interpolation in W1,p, p>2, with a constant depending on p as well as the maximum angle of the element. Again, under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree interpolations.
Keywords :
Maximum angle condition , Average interpolation , Lagrange Interpolation , Anisotropic elements
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2001
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551546
Link To Document :
بازگشت