Title of article :
Zeros of ultraspherical polynomials and the Hilbert–Klein formulas
Author/Authors :
Driver، نويسنده , , Kathy and Duren، نويسنده , , Peter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
The orthogonality of the ultraspherical polynomials Cnλ(z) for λ>−12 ensures that all of their zeros are in the interval (−1,1). In a previous paper (Driver and Duren, Indag. Math. 11 (2000) 43–51), we have shown that when λ<1−n, all of the zeros lie on the imaginary axis. Our purpose is now to describe the trajectories of the zeros of Cnλ(z) as λ decreases from −12 to 1−n. In particular, the pattern of migration from the interval (−1,1) to the imaginary axis serves to confirm and “explain” the classical formulas of Hilbert and Klein for the number of zeros of Cnλ(z) lying in each of the real intervals (−∞,−1), (−1,1), and (1,∞).
Keywords :
Ultraspherical polynomials , Gegenbauer polynomials , Hilbert–Klein formulas , Hypergeometric functions , Zeros
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics