Title of article :
Inequalities for the constants of Landau and Lebesgue
Author/Authors :
Alzer، نويسنده , , Horst، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
16
From page :
215
To page :
230
Abstract :
The constants of Landau and Lebesgue are defined for all integers n⩾0 byGn=∑k=0n116k2kk2 and Ln=12π∫−ππsin((n+12)t)sin(12t) dt,respectively. We establish sharp inequalities for Gn and Ln/2 in terms of the logarithmic derivative of the gamma function. Further, we prove that the sequence (ΔGn) is completely monotonic, we provide best possible upper and lower bounds for the ratios (Gn−1+Gn+1)/Gn and (L(n−1)/2+L(n+1)/2)/Ln/2, and we present sharp bounds for Ln/2/Gn and Ln/2−Gn.
Keywords :
inequalities , Psi function , Complete monotonicity , Constants of Landau and Lebesgue
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551653
Link To Document :
بازگشت