Title of article :
Quadrature rules using first derivatives for oscillatory integrands
Author/Authors :
Kim، نويسنده , , Kyung Joong and Cools، نويسنده , , Ronald and Ixaru، نويسنده , , L.Gr.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
19
From page :
479
To page :
497
Abstract :
We consider the integral of a function y(x), I(y(x))=∫−11y(x) dx and its approximation by a quadrature rule of the formQN(y(x))=∑k=1N wky(xk)+∑k=1N αky′(xk),i.e., by a rule which uses the values of both y and its derivative at nodes of the quadrature rule. We examine the cases when the integrand is either a smooth function or an ω dependent function of the form y(x)=f1(x) sin(ωx)+f2(x) cos(ωx) with smoothly varying f1 and f2. In the latter case, the weights wk and αk are ω dependent. We establish some general properties of the weights and present some numerical illustrations.
Keywords :
quadrature rule , Oscillatory integrand , Integration formula
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551689
Link To Document :
بازگشت