Title of article :
Limit distribution for the maximum degree of a random recursive tree
Author/Authors :
Goh، نويسنده , , William and Schmutz، نويسنده , , Eric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
22
From page :
61
To page :
82
Abstract :
If a recursive tree is selected uniformly at random from among all recursive trees on n vertices, then the distribution of the maximum in-degree Δ is given asymptotically by the following theorem: for any fixed integer d,Pn(Δ⩽⌊μn⌋+d)=exp(−2{μn}−d−1)+o(1)as n→∞, where μn=log2 n. (As usual, ⌊μn⌋ denotes the greatest integer less than or equal to μn, and {μn}=μn−⌊μn⌋.) The proof makes extensive use of asymptotic approximations for the partial sums of the exponential series.
Keywords :
Recursive , Szeg? , Exponential series , asymptotic enumeration , Degree , Tree
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551741
Link To Document :
بازگشت