Title of article :
The N-widths of spaces of holomorphic functions on bounded symmetric domains, II
Author/Authors :
Ding، نويسنده , , Hongming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
12
From page :
175
To page :
186
Abstract :
Let D be a bounded symmetric domain and Σ be the Shilov boundary of D. For λ∈W, the Wallach set, and a nonnegative integer l, we study the weighted Bergman space Aλ2(D) and the weighted Bergman–Sobolev space A2,λ,l(D). For 0<ρ<1 we obtain exact values of the Gelʹfand and linear N-widths of A2,λ,l(D) in C(ρΣ). We also obtain the Bernstein N-widths of the Hardy–Sobolev space H∞,l(D) in Aλ2(ρD).
Keywords :
Jordan pair , Symmetric cone , Bounded symmetric domain , Weighted Bergman space , Bergman Space , Radial derivative , n-Widths , Hardy space , Shilov boundary , reproducing kernel
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551800
Link To Document :
بازگشت