Title of article :
An asymptotic expansion of the Kontorovich–Lebedev transform of damped oscillatory functions
Author/Authors :
Naylor، نويسنده , , D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
10
From page :
21
To page :
30
Abstract :
An asymptotic expansion valid for large positive values of s is constructed for the integral transformF(s)=∫0∞ Kis(x)f(x)dxx,where Kis(x) denotes the modified Bessel function of the third kind of purely imaginary order. The expansion applies to functions f(x) that are analytic in the sector |arg(x)|⩽π/4 and that are exponentially damped and oscillatory as x→∞ in this sector.
Keywords :
asymptotic expansion , integral transforms , Bessel functions
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551819
Link To Document :
بازگشت