Title of article
Higher order asymptotic distribution of the eigenvalues of nondefinite Sturm–Liouville problems with one turning point
Author/Authors
Akbarfam، نويسنده , , A.Jodayree and Mingarelli، نويسنده , , Angelo B.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2002
Pages
15
From page
423
To page
437
Abstract
In this paper we derive the higher order asymptotic distribution of the positive eigenvalues associated with a linear real second order equationy″+(λxα−q(x))y=0,of Sturm–Liouville type on [a,b] with Dirichlet boundary condition (i.e., y(a)=y(b)=0), where −∞<a<0<b<∞, q is a real-valued sign-indefinite member of C1[a,b], λ is a real parameter and α>−1 is chosen so that the boundary problem is non-definite.
Keywords
Sturm–Liouville problems , eigenvalues , Nondefinite , Asymptotic distribution , turning point
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2002
Journal title
Journal of Computational and Applied Mathematics
Record number
1551980
Link To Document