• Title of article

    Asymptotic representations for hypergeometric-Bessel type function and fractional integrals

  • Author/Authors

    Anatoly A. Kilbas a، نويسنده , , Anatoly A. and Rodr??guez، نويسنده , , Luis and Trujillo، نويسنده , , Juan J.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    19
  • From page
    469
  • To page
    487
  • Abstract
    The paper is devoted to the study of asymptotic relations for the functionλγ,σ(β)(z)=βΓ(γ+1−1/β)∫1∞(tβ−1)γ−1/βtσ e−zt dtgeneralising Tricomi confluent hypergeometric function and modified Bessel function of the third kind. The full asymptotic representations for λγ,σ(β)(z) at zero and infinity are established. Applications are given to obtain full asymptotic expansions near zero and infinity for the Liouville fractional integral(I−αf)(x)=1Γ(α)∫x∞f(t) dt(t−x)1−α (x>0; α∈C, Re(α)>0)and for the Erdelyi–Kober-type fractional integral(I−;β,ηαf)(x)=βxβηΓ(α)∫x∞tβ(1−α−η)−1f(t) dt(tβ−xβ)1−α (x>0; α∈C, (Re(α)>0)with β>0 and η∈C of power-exponential function f(t), and for three other fractional integrals.
  • Keywords
    Asymptotic expansions , Confluent hypergeometric function , Bessel-type function , Liouville and Erdelyi–Kober-type fractional integrals
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2002
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1551983