Title of article
Asymptotic representations for hypergeometric-Bessel type function and fractional integrals
Author/Authors
Anatoly A. Kilbas a، نويسنده , , Anatoly A. and Rodr??guez، نويسنده , , Luis and Trujillo، نويسنده , , Juan J.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2002
Pages
19
From page
469
To page
487
Abstract
The paper is devoted to the study of asymptotic relations for the functionλγ,σ(β)(z)=βΓ(γ+1−1/β)∫1∞(tβ−1)γ−1/βtσ e−zt dtgeneralising Tricomi confluent hypergeometric function and modified Bessel function of the third kind. The full asymptotic representations for λγ,σ(β)(z) at zero and infinity are established. Applications are given to obtain full asymptotic expansions near zero and infinity for the Liouville fractional integral(I−αf)(x)=1Γ(α)∫x∞f(t) dt(t−x)1−α (x>0; α∈C, Re(α)>0)and for the Erdelyi–Kober-type fractional integral(I−;β,ηαf)(x)=βxβηΓ(α)∫x∞tβ(1−α−η)−1f(t) dt(tβ−xβ)1−α (x>0; α∈C, (Re(α)>0)with β>0 and η∈C of power-exponential function f(t), and for three other fractional integrals.
Keywords
Asymptotic expansions , Confluent hypergeometric function , Bessel-type function , Liouville and Erdelyi–Kober-type fractional integrals
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2002
Journal title
Journal of Computational and Applied Mathematics
Record number
1551983
Link To Document