Title of article :
Moments of infinite convolutions of symmetric Bernoulli distributions
Author/Authors :
Escribano، نويسنده , , C. and Sastre، نويسنده , , M.A. and Torrano، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
9
From page :
191
To page :
199
Abstract :
We study the infinite convolution of symmetric Bernoulli distributions associated to a parameter r. We obtain an explicit formula for the moments as a function of Bernoulli numbers and conditioned partitions. Applying this formula we obtain the moments as a quotient of polynomials in the parameter r. The leading coefficient of the numerator is related to the asymptotic behavior of the moments and, unexpectedly, this coefficients are the absolute values of Euler numbers.
Keywords :
Infinite Bernoulli convolution , orthogonal polynomials , Euler numbers , Exponential generating function
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552097
Link To Document :
بازگشت