Title of article :
On the Bernstein-type inequalities for ultraspherical polynomials
Author/Authors :
Giordano، نويسنده , , C. and Laforgia، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
243
To page :
248
Abstract :
We present a survey of the most recent results and inequalities for the gamma function and the ratio of the gamma functions and study, among other things, the relation between these results and known inequalities for ultraspherical polynomials. In particular, we discuss the inequality(sin θ)λ|Pn(λ)(cos θ)|<21−λΓ(λ) Γ(n+3/2λ)Γ(n+1+1/2λ), 0⩽θ⩽π,where Pn(λ)(cos θ) denotes the ultraspherical polynomial of degree n, established by Alzer (Arch. Math. 69 (1997) 487) and the one established by Durand (In: R.A. Askey (Ed.), Theory and Application of Special Functions, Proceedings of the Advanced Seminar on Mathematical Research Center, University of Wisconsin, Madison, Vol. 35, Academic Press, New York, 1975, p. 353)(sin θ)λ|Pn(λ)(cos θ)|⩽Γ(n/2+λ)Γ(λ)Γ(n/2+1), 0⩽θ⩽π.
Keywords :
gamma function , Ultraspherical polynomials , Inequality
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2003
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552102
Link To Document :
بازگشت