Title of article :
Abel–Gontscharoff interpolation: continuous, discrete and time scale
Author/Authors :
Wong، نويسنده , , Patricia J.Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
20
From page :
763
To page :
782
Abstract :
In this paper we shall discuss the Abel–Gontscharoff interpolation problem in the continuous, discrete and time scale cases. Let Pn−1 denote the (n−1)th degree Abel–Gontscharoff interpolating polynomial of a given function x. The interpolating conditions in the continuous, discrete and time scale cases are, respectively, given by Pn−1(i)(ai+1)=x(i)(ai+1), ΔiPn−1(ai+1)=Δix(ai+1), and Pn−1Δi(ai+1)=xΔi(ai+1), 0⩽i⩽n−1 where ai, 1⩽i⩽n are the interpolating nodes. In each of the three cases we shall present the best possible error bounds under different settings of aiʹs. Furthermore, as an application of the error estimates obtained, criteria are developed for the right disfocality as well as disconjugacy for higher order equations in each of the three cases.
Keywords :
error estimates , Abel–Gontscharoff interpolation , Disconjugacy , Right disfocality
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552508
Link To Document :
بازگشت