Title of article :
On application of an alternating direction method to Hamilton–Jacobin–Bellman equations
Author/Authors :
Huang، نويسنده , , C.-S. and Wang، نويسنده , , S. and Teo، نويسنده , , K.L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
14
From page :
153
To page :
166
Abstract :
This paper presents a numerical method for the approximation of viscosity solutions to a Hamilton–Jacobi–Bellman (HJB) equation governing a class of optimal feedback control problems. The first-order HJB equation is first perturbed by adding a diffusion term with a singular perturbation parameter. The time and spatial variables in the resulting equation are then discretized respectively by an implicit modified method of characteristics and the alternating direction (AD) scheme. We show that the AD procedureʹs perturbation error is virtually negligible due to the small perturbation parameter. And the efficient AD scheme can be applied to our HJB equation without generating splitting error. Numerical results, performed to verify the usefulness of the method, show that the method gives accurate approximate solutions to both of the control and the state variables.
Keywords :
Optimal feedback control , Finite difference method , viscosity solution , Alternating direction method , Characteristic method , Hamilton–Jacobi–Bellman equation
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552520
Link To Document :
بازگشت