Title of article :
On the comparison of a weak variant of the Newton–Kantorovich and Miranda theorems
Author/Authors :
Argyros، نويسنده , , Ioannis K، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
5
From page :
585
To page :
589
Abstract :
We recently showed a semilocal convergence theorem that guarantees convergence of Newtonʹs method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton–Kantorovich theorem. Here we first weaken Mirandaʹs theorem, which is a generalization of the intermediate value theorem. Then we show that operators satisfying the weakened Newton–Kantorovich conditions satisfy those of the weakened Mirandaʹs theorem.
Keywords :
Miranda theorem Lipschitz , Miranda partition/domain/conditions , Newton–Kantorovich hypothesis , Newton–Kantorovich theorem , Center-Lipschitz condition
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552547
Link To Document :
بازگشت