Title of article :
Method of lines study of nonlinear dispersive waves
Author/Authors :
Saucez، نويسنده , , P. and Vande Wouwer، نويسنده , , A. and Schiesser، نويسنده , , W.E. and Zegeling، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
In this study, we consider partial differential equation problems describing nonlinear wave phenomena, e.g., a fully nonlinear third order Korteweg-de Vries (KdV) equation, the fourth order Boussinesq equation, the fifth order Kaup–Kupershmidt equation and an extended KdV5 equation. First, we develop a method of lines solution strategy, using an adaptive mesh refinement algorithm based on the equidistribution principle and spatial regularization techniques. On the resulting highly nonuniform spatial grids, the computation of high-order derivative terms appears particularly delicate and we focus attention on the selection of appropriate approximation techniques. Finally, we solve several illustrative problems and compare our computational approach to conventional solution techniques.
Keywords :
Korteweg-de Vries equation , Adaptive Mesh Refinement , Finite differences , method of lines , N-soliton solution , Kaup–Kupershmidt equation
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics