Title of article :
On the Newton–Kantorovich hypothesis for solving equations
Author/Authors :
Argyros، نويسنده , , Ioannis K، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
18
From page :
315
To page :
332
Abstract :
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newtonʹs method to a solution of an equation in connection with the Lipschitz continuity of the Fréchet-derivative of the operator involved. Here using Lipschitz and center-Lipschitz conditions we show that the Newton–Kantorovich hypothesis can be weakened. The error bounds obtained under our semilocal convergence result are more precise than the corresponding ones given by the dominating Newton–Kantorovich theorem.
Keywords :
Banach space , Majorant method , Semilocal–local convergence , Newton–Kantorovich hypothesis , Radius of convergence , Center-Lipschitz condition , Lipschitz , Newton–Kantorovich theorem , Fréchet-derivative , Newtonיs method
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2004
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552654
Link To Document :
بازگشت