Title of article :
Generalized Hyers–Ulam–Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over -algebras
Author/Authors :
Park، نويسنده , , Chun-Gil، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
279
To page :
291
Abstract :
Assume that X is a left Banach module over a unital C * -algebra A. It is shown that almost every n-sesquilinear-quadratic mapping h : X × X × X n → A is an n-sesquilinear-quadratic mapping when h ( rx , y ; z 1 , … , z n ) = h ( x , ry ; z 1 , … , z n ) = h ( x , y ; r z 1 , z 2 , … , z n ) = ⋯ = h ( x , y ; z 1 , z 2 , … , r z n ) = rh ( x , y ; z 1 , z 2 , … , z n ) ( r > 0 , r ≠ 1 ) holds for all x , y , z 1 , … , z n ∈ X . er, we prove the generalized Hyers–Ulam–Rassias stability of an n-sesquilinear-quadratic mapping on a left Banach module over a unital C * -algebra.
Keywords :
n-sesquilinear-quadratic mapping , stability , Functional equation , n-inner product space , Banach module over C * -algebra
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2005
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1552968
Link To Document :
بازگشت