Title of article :
A new inversion free iteration for solving the equation
Author/Authors :
El-Sayed، نويسنده , , Salah M. and Al-Dbiban، نويسنده , , Asmaa M. and Saeed، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
In this paper, we introduce a new inversion free variant of the basic fixed point iteration method for obtaining a maximal positive definite solution of the nonlinear matrix equation X + A ★ X - 1 A = Q . It is more accurate than Zhanʹs algorithm (J. Sci. Comput. 17 (1996) 1167) and has less number of operations than the algorithm of Guo and Lancaster (Math. Comput. 68 (1999) 1589). We derive convergence conditions of the iteration and existence conditions of a solution to the problem. Finally, we give some numerical results to illustrate the behavior of the considered algorithm.
Keywords :
Inversion free variant of the basic fixed point iteration methods , Matrix equation , Convergence Rate
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics