Title of article :
A four-step trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems
Author/Authors :
Dai، نويسنده , , Yongming and Wang، نويسنده , , Zhongcheng and Wu، نويسنده , , Dongmei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
In this paper, we present a new P-stable Obrechkoff four-step method, which greatly improves the performance of our previous Obrechkoff four-step method and extends its application range. By trigonometric fitting, we extend the interval of periodicity of the previous four-step method from about H 2 ∼ 16 to infinity and at the same time, we keep all its advantage in the accuracy and efficiency. We have tested the new method by four well-known problems, (1) the test-equation; (2) Stiefel and Bettis problem; (3) Duffing equation without damping; and (4) Bessel equation. The numerical results show that the new method is more accurate than any previous method. It also has great advantage in stability and efficiency.
Keywords :
Obrechkoff method , P-stable , Second-order initial value problem with periodic solutions , High-order derivative , First-order derivative formula
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics