Title of article :
A truncated-CG style method for symmetric generalized eigenvalue problems
Author/Authors :
Absil، نويسنده , , P.-A. and Baker، نويسنده , , C.G. and Gallivan، نويسنده , , K.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
A numerical algorithm is proposed for computing an extreme eigenpair of a symmetric/positive-definite matrix pencil ( A , B ) . The leftmost or the rightmost eigenvalue can be targeted. Knowledge of ( A , B ) is only required through a routine that performs matrix–vector products. The method has excellent global convergence properties and its local rate of convergence is superlinear. It is based on a constrained truncated-CG trust-region strategy to optimize the Rayleigh quotient, in the framework of a recently proposed trust-region scheme on Riemannian manifolds.
Keywords :
generalized eigenvalue problem , Steihaug–Toint , Truncated conjugate gradient , Extreme eigenvalues , global convergence , Matrix-free , Superlinear convergence , Trust-region
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics